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Context

Deposition is determined by particle :

size, but size time changes over time.

« Simulating gas flow in the lung is possible
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https://www.cbbl—okstate.com/singIe-post/2018/10/10/transient—airflow—patterns—in—an—ela_stic—lung—model
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Deposition is determined by particle :
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« Butthereis alack of understanding of aerosol behaviour ‘ "
- Evaporation/condensation & phase change N .
« Thus, formulation optimisation is difficult / - &
» 9
3 y )
b o & .
Smalld, = T & & y
= MICROSOL

https://www.cbbl—okstate.com/singIe-post/2018/10/10/transient—airflow—patterns—in—an—ela§tic—lung—model

© Microsol Ltd 2023



Context

Deposition is determined by particle

size, but size time changes over time.

« Simulating gas flow in the lung is possible Large d,

« Butthereis alack of understanding of aerosol behaviour .
« Evaporation/condensation & phase change

« Thus, formulation optimisation is difficult
—1 »
Controlling size is key to| =& —
optimising deposition. e
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Formulation development can be accelerated:

text

using in-silico approaches
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Figure 4.15. a) Multiple Respimat droplets simulated using the cascade impactor simulator, initial
diameter ranging from 0.1 to 20 pm. b) Size distribution as a function of time, inferred from the droplet

dynamics in a) and the impactor stage sizes. Relative abundance is equal to the relative number of

particles at each size bin width.

e« Evaporative models (Kulmala)

 Evolving size distributions introduced
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Figure 4.15. a) Multiple Respimat droplets simulated using the cascade impactor simulator, initial
diameter ranging from 0.1 to 20 pm. b) Size distribution as a function of time, inferred from the droplet
dynamics in a) and the impactor stage sizes. Relative abundance is equal to the relative number of

particles at each size bin width.
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Figure 4.17. Simulated cascade impactor measurements compared with data collected on an NGI, at 90%

and 100% RH, respectively.
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Our Approacl

* Improved SADKAT model engine

 Simulate full size distributions
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Accurate Measurements and Simulations of the Evaporation and
Trajectories of Individual Solution Droplets

Daniel A. Hardy, Joshua F. Robinson, Thomas G. Hilditch, Edward Neal, Pascal Lemaitre, S. Walker,
and Jonathan P. Reid*
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A refined numerical model for the evaporation and
transport ol droplets of binary solutions is introduced. Bench-
marking is performed against other models found in the literature
and experimental measurements of both electrodynamically
trapped and freefalling droplets. The model presented represents
the microphysical behavior of solutions droplets in the continuum
and transition regimes, accounting for the unique hygroscopic
behavior of different solutions, including the Fuchs—Sutugin and
Cunningham slip correction factors, and accounting for the Kelvin
effect. Simulations of pure water evaporation are experimentally
validated for temperatures between 290 K and 298 K and between
relative humidity values of approximately 0% and 85%. Measure-
ments and simulations of the spatial trajectories and evaporati
behavior of aqueous sodium chloride droplets are compared for relative humidity values between 0 and 40%. Simulations are shown
to represent experimental data within experimental uncertainty in initial conditions. Ca tions of a time-dependent Péclet number,
including the temperature dependence of solute diffusion, are related to morphologies of sodium chloride particles dried at different
rates. For sodium chloride solutions, dried particles are composed of collections of reproducibly shaped crystals, with higher
evaporation rates resulting in higher numbers of crystals, which are smaller.
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A refined numerical model for the evaporation and
transport ol droplets of binary solutions is introduced. Bench-
marking is performed against other models found in the literature
and experimental measurements of both electrodynamically
trapped and freefalling droplets. The model presented represents
the microphysical behavior of solutions droplets in the continuum
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ments and simulations of the spatial trajectories and evaporati

behavior of aqueous sodium chloride droplets are compared for relative humidity values between 0 and 40%. Simulations are shown
to represent experimental data within experimental uncertainty in initial conditions. Ca tions of a time-dependent Péclet number,
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. rates. For sodium chloride solutions, dried particles are composed of collections of reproducibly shaped crystals, with higher
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Our Approacl

* Improved SADKAT model engine

 Simulate full size distributions

 Virtual impactors

 Device agnostic formulation optimisation

* Moving towards modelling inhalation

* Regional deposition

» Physiological conditions
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ABSTRACT: A refined numerical model for the evaporation and

transport of droplets of binary solutions is introduced. Bench-

marking is performed against other models found in the literature

and experimental measurements of both electrodynamically

trapped and freefalling droplets. The model presented represents

the microphysical behavior of solutions droplets in the continuum

and transition regimes, accounting for the unique hygroscopic

behavior of different solutions, including the Fuchs—Sutugin and

Cunningham slip correction factors, and accounting for the Kelvin

effect. Simulations of pure water evaporation are experimentally

validated for temperatures between 290 K and 298 K and between

relative humidity values of approximately 0% and 85%. Measure-

ments and simulations of the spatial trajectories and evaporative

behavior of aqueous sodium chloride droplets are compared for relative humidity values between 0 and 40%. Simulations are shown
to represent experimental data within experimental uncertainty in initial conditions. ations of a time-dependent Péclet number,
including the temperature dependence of solute diffusion, are related to morphologies of sodium chloride particles dried at different
rates. For sodium chloride solutions, dried particles are composed of collections of reproducibly shaped crystals, with higher
evaporation rates resulting in higher numbers of crystals, which are smaller.




Simulating Single Droplets ¢ 2

We simulate droplets at the single-particle scale and then |. = «

expand up to the emergent distribution properties = =
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Simulating Single Droplets

We simulate droplets at the single-particle scale and then

expand up to the emergent distribution properties. =
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Simulating Single Droplets % <
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We simulate droplets at the single-particle scale and then | . =

expand up to the emergent distribution properties =
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Size Distributio _ P
Complex ; 4 -- ‘
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Distribution after throat - input to virtual impactor
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Size Distributio

Complex pi-— T

Diameter / pm

I I I | p a Ctl O n Figure 4.16. a) Size distribution of Respimat collect at Bath University by Ganley et al. in ambient
conditions. b) Size distribution of Respimat collected at BARC in below ambient conditions. The graphs

I n t h r O a t were used to determine the radial size range inputted into the cascade impact, 0.06 to 9 pm.
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Evolving Size Distributions N P
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‘ Speed of evaporation / condensation depends upon size
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Evolving Size Distributions 2 O
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Evolving Size Distributions N A
10 % RH 99 % RH - -

—
p—

Normalised Drug Distribution

(e
o
.4:.)
S
=
o
i)
4
a
@)
]
&
a
®)
(«b)
2
s
g
o
o
Z

0 0
10~ 109 10! 10! 109 10!

Aerodynamic Radius / pm Aerodynamic Radius / pm

“*MICROS0L Aqueous NaCl solution, 0.1 MFS, 298 K

© Microsol Ltd 2023



Filtering a distribution

JOURNAL OF AEROSOL MEDICINE
Volume 16, Number 3, 2003

© Mary Ann Liebert, Inc.

Pp. 301-324
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Next Generation Pharmaceutical Impactor
(A New Impactor for Pharmaceutical Inhaler Testing).
Part II: Archival Calibration

Collection Efficiency (%)

VIRGIL A. MARPLE, Ph.D.;! BERNARD A. OLSON, Ph.D. !
KUMARAGOVINDHAM SANTHANAKRISHNAN, M.S.Me.,! :
JOLYON P. MITCHELL, Ph.D.2 SHARON C. MURRAY, Ph.D.? Aerodynamic Diameter (um)
and BUFFY L. HUDSON-CURTIS, Ph.D3

FIG.7. Calibration of the archival NGI at 30-L/min inlet flow rate.
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Coupling Droplet cvolution & Filtpation
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Coupling Droplet Evolution & Filtpation. =
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NGl at 10 % RH Peakat 2.5 pm
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Controlling Deposition g

Reference: NaCl at 99 % RH
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Tool Box: Controlling Deposition

 Solute Concentration

e |nitial size distribution
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Hyegroscopicity is important
9

« Determines equilibrium size and rate NaCl

Glycerol

Tiotropium Bromide
Salbutamol Suphate

of size change
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Time Resolved Behaviour is |
During inhalation dynamic processes occur

« Droplet Environment
« Temperature & Relative Humidity (RH)

« Droplet State

» Size, temperature, density
» Solidification or dissolution

e Filtration Events

« Passage though the lung and regional deposition

- MICROSOL

© Microsol Ltd 2023




Next Steps
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Conclusions . H=]-
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: : | , S [] 7l <o ||
« Accurate simulations of population size | L S

change are possible

* Virtual impactors enable accelerated

formulation testing

« Enabling formulation engineering for

optimised deposition

< MICROSOL
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